Arithmetic Operations

of Vectors

Vector Addition

Consider two vectors, denoted \mathbf{A} and \mathbf{B}.

Q: Say we add these two vectors together; what is the result?

A: The addition of two vectors results in another vector, which we will denote as C. Therefore, we can say:

$$
A+B=C
$$

The magnitude and direction of C is determined by the head-to-tail rule.

This is not a provable result, rather the head-to-tail rule is the definition of vector addition. This definition is used because it has many applications in physics.

For example, if vectors A and B represent two forces acting an object, then vector C represents the resultant force when A and B are simultaneously applied.

Some important properties of vector addition:

1. Vector addition is commutative $\rightarrow A+B=B+A$

2. Vector addition is associative $\rightarrow(X+Y)+Z=X+(Y+Z)$

From these two properties, we can conclude that the addition of several vectors can be executed in any order:

$$
Z+Y+X=X+Y+Z
$$

Vector Subtraction

First, we define the negative of a vector to be a vector with equal magnitude but opposite direction.

Note that $A+(-A)=0$

We can therefore consider the addition of a negative vector as a subtraction:

$$
A-A=0
$$

More generally, we can write:

$$
A+(-B)=A-B
$$

E.G.,

Q: Is $A-B=B-A$?

A: What do you think?

